10 research outputs found

    Nonlinear Waves in Transmission Lines Periodically Loaded with Tunneling Diodes

    Get PDF

    Resonances in Left-Handed Waves Developed in Nonlinear Electrical Lattices

    Get PDF
    We investigate resonant interactions in a specific electrical lattice that supports left-handed (LH) waves. The impact of LH waves on the three-wave mixing process, which is the most fundamental resonant interaction, is illustrated. In contrast to the ordinary right-handed (RH) waves, the phase of the LH wave moves to the different direction from its power. This exotic property together with the lattice’s dispersive features results in the resonant phenomena that are effectively utilized for practical electrical engineering, including the significant harmonic wave generation via head-on collisions, harmonic resonance, and short pulse generation driven by soliton decay. These resonances are quantified by the asymptotic expansion and characterized by numerical and/or experimental methods, together with several design criteria for their practical utilization. To cope with dissipation, a field-effect transistor (FET) is introduced in each cell. In particular, we characterize the stationary pulse resulting from the balance between dissipation and FET gain

    Modulation of Pulse Train Using Leapfrogging Pulses Developed in Unbalanced Coupled Nonlinear Transmission Lines

    Get PDF
    The leapfrogging pulses in two unbalanced electrical nonlinear transmission lines (NLTLs) with capacitive couplings are investigated for efficient modulation of a pulse train. Due to the resonant interactions, the nonlinear solitary waves in the NLTLs exhibit complementary behaviors of amplitudes and phases called leapfrogging. For maximizing resonance, both solitary waves should have a common average velocity. Sharing the common velocity, the characteristic impedance can still be freely designed for two coupled solitary waves. In this study, we characterize the leapfrogging pulses developed in unbalanced NLTLs having distinct characteristic impedance. Through the soliton perturbation theory and numerical time-domain calculations, it is found that both the leapfrogging frequency and the voltage variations of pulse amplitudes increase as the difference in the characteristic impedance becomes large. These properties can improve the on/off ratio of modulated pulse train

    Composite Right- and Left-Handed Traveling-Wave Field-Effect Transistors

    Get PDF
    We introduce a composite right- and left-handed travelling-wave field-effect transistor (CRLH TWFET) for developing large-scale platform to support left-handed waves. The device represents two electromagnetically coupled CRLH transmission lines by capacitance and FET transconductance. Owing to the couplings, two different modes can support waves in CRLH TWFETs. It was experimentally established that waves supported by one of the modes were amplified, while those supported by the other mode were significantly attenuated. To quantify the wave propagation in CRLH TWFETs, we developed a numerical model based on the transmission line theory that well simulated measured results. This paper discusses the results of numerical calculations that validate the design criteria of CRLH TWFETs

    Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Get PDF
    Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD) method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs), together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET

    Frequency Divider Using One-Dimensional Tunnel-Diode Oscillator Lattice Systems

    No full text

    Experimental Observation of Oscillating Wave Propagation on Switch Lines for Generation of Continuous Electromagnetic Waves

    No full text
    We report the experimental observation of the generation of continuous electrical waves in a switch line, which is a transmission line periodically loaded with electronic switches. The oscillating motions of a wave front have been experimentally demonstrated in a line with discrete Esaki diodes employed as switches, when a rising step-pulse signal was passed through the line
    corecore